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Abstract 
 

The Main Objective of this Master thesis is to develop a machine learning based 

battery model to predict the execution time for charging and discharging cycles 

of different types of Lithium-ion battery cells from different manufacturer’s for 

different Test strategies for battery cell testing, in order to have an optimal 

planning of the test orders in a fully automated test bed for battery cells. 

Lithium-ion-based battery systems are an efficient alternative energy storage 

system for electrically propelled vehicles. The requirements for lithium-ion based 

battery systems for use as a power source for the propulsion of electric road 

vehicles are significantly different from those batteries used for consumer 

electronics or stationary usage. 

In the light of the rapid spread of hybrid electric vehicles and the emergence of 

battery and plug-in hybrid electric vehicles, a standard method for testing 

performance requirements of lithium-ion batteries is indispensable for securing a 

basic level of performance and obtaining essential data for the design of vehicle 

systems and battery back. For automobile application, it is important to note the 

usage specificity; i.e. the design diversity of automobile battery packs and 

systems, specific requirements for cells and batteries corresponding to each such 

designs. In order to accomplish this Test Factory for battery cell testing are built 

to research the behavior of battery cells like static and dynamic characterization, 

Parameterization of battery models etc. 

Machine learning is one of the promising areas in order to develop surrogate 

models for nonlinear system modelling to predict or to classify the variables. 

Battery execution time has a nonlinear behavior with the given input parameter 

set. Battery modelling with the ML algorithms will be good solution to represent 

the digital twin of a Battery.   
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1 Introduction 
The extension of battery application to automotive industries as a fuel for the 

Electric Vehicles (EV) has led to increase the research on the optimization of 

battery performance with a reduced battery cost. The Batteries to meet the market 

requirements for long-lasting high-energy performance for a dynamic charge and 

discharge processes and important characteristics for energy storage systems are 

the optimization of lifetime, safety, power, energy and costs. In order to evaluate 

the required conditions batteries must be tested with various testing strategies in 

a test bed with a controlled climate chamber and conduct the battery charging and 

discharging cycling procedures. 

In a testbed for a battery cell there are various basic and lifetime tests (input/output 

test, Rated Capacity test, Cyclic Aging test etc.) are conducted. Some of the 

required specifications of the cells like nominal capacity, charging & discharging 

characteristics are mentioned in a datasheet provided by the corresponding battery 

cell manufacturer. In order to conduct different test strategies for different battery 

cells, an optimal plan to run the test orders is required. For this the execution time 

of battery cell charging and discharging times are to be determined and provided 

for each test bed in a Test Chamber of a Test Factory. In order to achieve this a 

battery model is to be designed to determine the execution time of battery cell 

charging & discharging from the history of measured data. 

In this thesis concentrated mainly on the prediction of execution time of charging 

and discharging process for basic test methodology with general versatility, which 

serves a function in common primary testing of lithium-ion cells to be used in a 

variety of battery systems. If the execution time for different Lithium-ion battery 

cells is estimated, the test engineers can plan the implementation of tests in a test 

bed for each battery cell type.  
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In this chapter discussed about the aim of the thesis, software tools and data 

utilized to achieve the goal of the Master thesis. For battery model development 

utilized MATLAB/Simulink used and after finalizing the steps in MATLAB, 

implemented all the steps in Microsoft Azure Machine Learning Studio.  

In the next chapter, Battery, discussed about the basics of battery cell, operation 

and their specification. 

In the chapter, Battery Test Factory, discussed about the procedures of battery 

cell testing in a Battery test factory 

In the chapter, Battery Modelling, discussed about various types of battery 

modelling types and finalizing a battery modelling to accomplish the aim of the 

thesis. 

In the chapter, Battery Model development, discussed the steps & procedures to 

design a battery model. 

In the chapter, Results & Discussions, presented the results of the designed model 

and their limitations are further discussed. 

In the final chapter, Conclusion, concluded the aim of the thesis and further 

improvements. 
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2 Battery: 
A battery [1] is a device that converts the chemical energy contained in its active 

materials directly into electric energy by means of Electro-

chemical oxidation-reduction (redox) reaction. This type of 

reaction involves the transfer of electrons from one material to 

another through an electric circuit.  

While the term Battery is often used, the basic electrochemical unit 

being referred to is the “cell” as shown in Figure 1. A battery consists 

of one or more of these cells, connected in series or parallel, or 

both depending on the desired output voltage and capacity. 

The cell consists of three major components: 

1. The anode or negative electrode—the reducing or fuel electrode—which gives 

up electrons to the external circuit and is oxidized during the electrochemical 

reaction.  

2. The cathode or positive electrode—the oxidizing electrode—which accepts 

electrons from the external circuit and is reduced during the electrochemical 

reaction. 

3. The electrolyte—the ionic conductor—which provides the medium for transfer 

of charge, as ions, inside the cell between the anode and cathode. The electrolyte 

is typically a liquid, such as water or other solvents, with dissolved salts, acids, or 

alkalis to impart ionic conductivity. Some batteries use solid electrolytes or gel-

type polymer electrolytes, which are ionic conductors at the operating temperature 

of the cell.  

The most advantageous combinations of anode and cathode materials are those 

that will be lightest and give a high cell voltage and capacity. Lithium, the lightest 

metal, with a high value of electrochemical equivalence, has become a very 

Figure 1: Lithium-Ion Cell 
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attractive anode as suitable and compatible electrolytes and cell designs have been 

developed to control its activity. The cathode must be an efficient oxidizing agent, 

be stable when in contact with the electrolyte, and have a useful working voltage. 

The electrolyte must have good ionic conductivity but not be electronically 

conductive, as this would cause internal short-circuiting. Other important 

characteristics are nonreactivity with the electrode materials, little change in 

properties with change in temperature, safety in handling, and low cost.  

Electrochemical cells and batteries are identified as primary (non-rechargeable) 

or secondary (rechargeable), depending on their capability of being electrically 

recharged. 

Primary Cells or Batteries: These batteries are not capable of being easily or 

effectively recharged electrically and, hence, are discharged once and discarded. 

The primary battery is a convenient, usually inexpensive, lightweight source of 

packaged energy for portable electronic and electric devices, lighting, digital 

cameras, toys, memory backup, Global positioning system devices, and a myriad 

of other applications. 

Secondary or Rechargeable Cells or Batteries: These batteries can be recharged 

electrically, after discharge, to their original condition by passing current through 

them in the opposite direction to that of the discharge current. They are storage 

devices for electric energy and are known also as “storage batteries” or 

“accumulators.” Secondary battery is used or discharged essentially as a primary 

battery but recharged after use rather than being discarded. Secondary batteries 

are used in this manner as, for example, in portable consumer electronics, such as 

cell phones, laptop computers, power tools etc., for cost savings (as they can be 

recharged rather than replaced) and in applications requiring power drains beyond 

the capability of primary batteries. Electric vehicles (EVs) and plug-in hybrid 

PHEVs also falls into this category. 
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The chemicals in the battery will ultimately reach a state of equilibrium. In this 

state, the chemicals will no longer tend to react, and the battery will not generate 

any more electric current. At this point, the battery is considered ‘dead’. 

2.1 Factors Effecting Battery performance: 

Battery cell characteristics are varied dependent on the charge cycle, load cycle 

(Discharge cycle), over lifetime including many factors like internal chemistry, 

current drain, and temperature.  

At low temperatures, a battery cannot deliver much power. In cold climates some 

car owners install battery warmers, representing a small electric heating pads that 

keep the car battery warm.   

For a rechargeable battery lifetime means either the length of time a device can 

run on a fully charged battery or the number of charge/discharge cycles possible 

before the battery is dead. 

Disposable batteries lose 8 to 20 percent of their original charge per year when 

stored in room temperature (20-30 ℃) and this phenomenon is called as self-

discharge. Self-discharge can happen due to non-current producing “side” 

chemical reactions that occur in cell when there is no load applied.  

2.2 Operation of a cell:  

Discharge: When the cell is connected to an external load, electrons flow from the 

anode, which is oxidized, through external load to the cathode, where the electrons 

are accepted, and the cathode material is reduced [2]. The electric circuit is 

completed in the electrolyte by the flow of anions (negative ions) and cations 

(positive ions) to the anode and cathode, respectively Figure 2. 
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Figure 5: Discharge of a cell 

Charge: During the Recharge/Charging of a rechargeable or storage cell, the 

current flow is reversed, and oxidation takes place at the positive electrode and 

reduction at the negative electrode, as shown in figure. As the anode is, by 

definition, the electrode at which oxidation occurs and the cathode the one where 

reduction takes place, the positive electrode is now the anode and the negative the 

cathode Figure 3. 

 

 

Figure 6: Charge of a cell 
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2.3 Battery Specifications: 

Capacity:  

Battery capacity is defined as total number of ampere-hours that can be withdrawn 

from a fully charged battery under specified condition.  

𝐶𝐶 = 𝐼𝐼 ∗ 𝑇𝑇 

C- Capacity of battery in Ah 

I - Current in amperes 

T- Discharge time in hours 

 

State of charge: 

State of charge is the current state of battery with respect to the available capacity 

during charging and discharging profiles. State of charge of a battery is defined 

as the ratio between the current capacity of the nominal capacity. It is expressed 

as the following equation. 

 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆0 −  
1

𝜂𝜂 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛
� 𝐼𝐼(𝑡𝑡)
𝑡𝑡

0
 𝑑𝑑𝑑𝑑 

 
𝑆𝑆𝑆𝑆𝑆𝑆     -State of charge at time instant `t´ 
𝑆𝑆𝑆𝑆𝑆𝑆0    -Initial or full charged state 
𝜂𝜂            -Coulomb efficiency of battery 
𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛    -Nominal capacitance of the battery 
𝐼𝐼(𝑡𝑡)      -Instantaneous current which is positive for discharging and negative for                             
              charging                                                         
 
Open Circuit Voltage: 

Open circuit voltage (OCV) is the potential difference between the terminals of 

battery when no load is connected. For batteries, OCV is an important parameter 

to determine the State of charge of the cell, as it is in steady state. The accuracy 

depends on the characteristics between voltage over OCV curve. 
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Cut-off Voltage: 

For a cell cut-off voltage is the voltage at which cell is considered fully 

discharged, beyond this discharge could harm the cell. The cut-off voltage is 

chosen so that maximum useful capacity of the battery is achieved. For testing the 

capacity of cell, a cut-off voltage of 1.0V is used. This cut-off voltage is defined 

by the manufacture and it is different for different types of battery cells. 

 

Nominal Capacity: 

Nominal capacity is the total Amp-hours available when the battery is discharged 

at a certain discharge current from 100% to the cut-off voltage. Capacity is 

calculated as product of discharge current (Amps) and time taken to discharge. 

 

Nominal Voltage: 

Nominal voltage is the average voltage a cell output when charged. The nominal 

voltage must be lower than the rated voltage the nominal voltage of a battery 

depends on the chemical reaction behind it. For Lithium polymer, Nominal 

voltage is 3.7V. 

 

Rated Capacity: 

Supplier’s specification of the total number of ampere hours that can be 

withdrawn from a fully charged battery cell for a specified set of test conditions 

such as discharge rate, temperature, and discharge cut-off voltage. 

 

Battery Pack: 

Mechanical assembly comprising battery cells and retaining frames or trays, and 

possibly components for battery management. 
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State of Health: 

State of health is the measure that gives the general condition of battery and its 

ability to deliver at specified performance in comparison to the fresh battery. 

 

Rated Voltage: 

Rated voltage is nothing but the voltage value that has given by the manufacturer 

representing the safest maximum voltage it can work without reducing cell life 

span. 

3 Test Factory for Battery Cells: 
In the next few years the automotive industries will bring variety of electric 

vehicles in to market. One of the essential parts in electric vehicles is Battery pack 

that consists of several battery cells. These battery cells before use must be 

extensively tested to be efficient for the operation of vehicles. For this battery 

testing factories are built in present and future to research the behavior of battery 

cells. As show in the Figure 4 Test Factory mainly comprised of: 

 

 

Figure 7 Schematic diagram of Test Factory set up 
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Test Chamber System: A chamber containing several Test Beds and a climate 

chamber in which battery cells can be tested by carrying out various Test 

procedures. 

Test Bed: A Test bed consists of cycler for controlling the input and output current 

and voltage for battery cell and measurement equipment for measuring the 

parameters Current(A), Voltage(V), Climate chamber temperature(°C), Battery 

Cell Temperature(°C). 

Climate Chamber: This is used to generate and maintain a specified climate, 

usually temperature and humidity for the duration of the test.  

The Test Factory for Battery cells or Battery pack is fully automated by an 

innovative software technology thereby conducting Test strategy experiments to 

study the battery cell charge and discharge process in the laboratory setup 

simulated in a controlled climatic condition. There are different types of 

comprehensive tests conducted in an automated battery test system as per given 

automobile industry standards in order to characterize the battery performance. 

According to the summary of International standard IEC 62660 series, published 

under the general title Secondary lithium-ion cells for the propulsion of electric 

road vehicles and from the detailed documentation presented by BMW AG to 

safeguard lithium-ion cells for BEV, PHEV/HEV vehicle, there are many basic 

and lifetime tests (input/output test, OCV, Pulse power driving profile, Power 

pulse according to specification, Rated capacity, cyclic service life. some of the 

tests conducted are given in the Figure 5. 
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General tests Performance tests Reliability tests Abuse tests 

• Pre-conditioning cycle 

• Standard cycle 

• Standard discharge 

• Standard charge 

• Energy and capacity 

at RT 

• Energy and capacity 

at different 

temperature and 

discharge rates 

• Energy efficiency at 

fast charging 

• SOC loss at storage 

• Cycle life 

• Dewing  

• Thermal shock 

cycling 

• Vibration 

• Mechanical 

shock 

• Short circuit 

protection 

• Overcharge 

protection 

• Over discharge 

protection 

Figure 8: Overview of tests conducted for a battery cell 

Some of the Test strategies considered during this Master Thesis are: 

• Standard charge-This test is performed to ensure standard charge procedure 

for Li-ion cell at a room temperature (25°C) in a climate chamber if not 

instructed differently. 

 Procedure: 

1. Charge with 1C (PHEV/HEV) or 1/3C(BEV). 

2. Stop under following conditions: 

a. Specified SOC has been reached 

b. At reaching U (max, ch) the charging procedure is continued 

CV until the current reaches 20mA. 

Overview of tests 
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• Standard discharge- This test is performed to ensure standard discharge 

procedure for Li-ion cell at a room temperature (25°C) in a climate chamber if 

not instructed differently.  

 Procedure: 

1. Discharge with 1C (PHEV/HEV) or 1/3C(BEV). 

2. Stop under following conditions: 

a. Specified SOC has been reached. 

b. U (min, dch) has been reached. 

• Preconditioning/ incoming inspection- This test is conducted in order to 

ensure the usability of the cell for further testing’s. Furthermore, the 

conditioning of the cell guaranties that all cells are in comparable state for the 

further tests. 

 Procedure: 

1. Visual check for faults (Leakage, loose connectors or similar 

faults) 

2. Determination of the open circuit voltage (at delivery state) 

3. Conditioning: Capacity measurement 

• Capacity measurement- This test describes the capacity measurement 

procedure to determine the reference value for the SOC adjustment at room 

temperature. 
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 Procedure: 

1. Temperature adjustment to 25°C in climate chamber 

2. Charge with SCH (Standard Charge procedure) 

3. Wait 30 min 

4. Discharge with SDCH (Standard Discharge) 

Table 1: Capacity measurement procedure 

• Intermediate test- During lifetime testing a short performance test is 

conducted with the cell in regular intervals. Through this aging of the cell 

is determined. 

 Procedure: 

1. Temperature adjustment to 25°C in climate chamber 

2. Charge with SCH (Standard Charge procedure) 

3. Wait 30 min 

4. Discharge with SDCH (Standard Discharge) 

5. Wait 30 min 

6.  Repeat the step 2 to 5 twice in accordance to basic validation 

7. Charge with SCH (Standard Charge procedure) 

8. Wait 30 min 
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9. Discharge with 1/3SDCH Discharge with SDCH (Standard 

Discharge) 

10. Wait 30 min 

11. Discharge with 3C for 30s 

Table 2: Intermediate Test 

• Cyclic Aging- In this test cyclic life time of a Li-ion cell is to be tested. The test 

ends if EOL criteria or the specified cycle number is reached. 

 Procedure: 

1. Temperature adjustment to 25°C or instructed differently in 

climate chamber 

2. Charge with SCH (Standard Charge procedure) 

3. Wait 30 min 

4. Discharge with SDCH (Standard Discharge) 

Table 3: Cyclic aging 

• Energy and capacity at room temperature- This test measures device under 

test capacity in Ah (Ampere hour) at constant current discharge rates 

corresponding to the supplier rated capacity. 
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                         .                                                       .                                                     . 

                         .                                                       .                                                     . 

                         .                                                       .                                                     . 

 

 

From above all tests the common test procedures carried according to the battery 
cell data available for accomplishing the aim of the thesis is given in the table 
below. 

 

Step (cycle) Procedure Ambient Temperature 

1.1 Standard Charge (1.5A) 24°C 

1.2 Standard Discharge(-2A) 24°C 

2.1 Standard Charge (1.5A) 24°C 

2.2 Standard Discharge(-2A) 24°C 

 

 

20.1 Standard Charge (1.5A) 24°C 

20.2 Standard Discharge(-2A) 24°C 
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4 Review of battery modelling: 
A common battery datasheet contains the fundamental information such as the 

battery chemistry, dimensions, capacity, internal impedance, nominal voltage, 

end of charge voltage and current, end of discharge voltage, charge specifications 

in terms of maximum current in CC mode, operating temperature range, storage 

temperature. This information represents the standard tests performed by the 

manufacturers, that are not representative of actual working conditions of battery 

[3]. The aim of the basic battery data sheet is to define the safety operating 

conditions a cell can operate. Additional information like cycle life in actual duty 

cycle and actual capacity according to the discharging strategy are necessary to 

further test batteries.  

In order to ensure a safe and efficient operation, a proper battery model is essential 

in predicting the battery behavior under various operating conditions to avoid 

improper operations. The battery behavior under various operating conditions 

helps design on-board control and maintenance. Another important application of 

a battery model is to estimate battery states, such as state of charge and state of 

health which are not yet directly measurable [4]. 

Over the years, researchers have developed different battery models of different 

level of accuracy and complexity [5]. The battery models are mainly divided in to 

three groups: 

1) White box models (e.g. electro chemical model) 

2) Grey-box models (e.g. equivalent electric circuit model) 

3) Black-box models (e.g. Neural network model/ Machine learning model) 
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4.1 Electrochemical models: 

This model has the advantage of representing the electrochemical dynamics of a 

battery [6]. This type of battery model is represented by a set of couple partial 

differential equations (PDEs). These equations tell how the cell’s potential is 

produced and effected by electrochemical reactions that took place inside the cell. 

This model is more accurate compared to other battery models as they explain the 

key behaviors of battery at microscopic scale based on chemical reactions 

occurring inside the battery. These models are complex and time consuming 

because they involve a system of coupled time-variant spatial partial differential 

equations. This type of solution requires days of simulation time, complex 

numerical algorithms, and battery-specific information that is difficult to obtain 

and develop a physical model [7]. 

4.2  Electric circuit-based models: 

This model is useful and easy to implement specifically for an electrical designer 

[8]. In comparison with the electrochemical models, circuit-based models don’t 

deal with the complicated electrochemical interactions at the cell level but simply 

the battery performances at the system level. This model simulates the behavior 

of the battery in different applications using voltage source, resistors and 

capacitors in different combination such as Thevenin-based model, impedance-

based model and runtime- based models. One of the widely used model is 

Thevenin’s equivalent electrical circuit model (RC Model), in this a single resistor 

serves to represent the internal resistance of the battery and a combination of 

parallel RC circuit to represent the transient behavior of the cell. Here the number 

of parallel RC combination can be decided by the designer up on validating the 

accuracy of the model. This could also change for every cell type and for different 

test strategies. 
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Below Figure 6 is an example of Thevenin based electric model: 

 

             Figure 9: Equivalent circuit model of a Battery cell 
 

OCV - Open circuit voltage of Cell 

𝑅𝑅𝑠𝑠    - Represents the internal resistance of Cell 

𝑅𝑅𝑅𝑅   - Parallel RC networks represent the transient behavior of the Cell 

𝐼𝐼𝐿𝐿     - Load Current 

The terminal voltage of third order RC-Parallel circuit is given as follows. 

 

𝑉𝑉𝑡𝑡 = 𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑉𝑉𝑅𝑅𝑅𝑅1 − 𝑉𝑉𝑅𝑅𝑅𝑅2 − 𝐼𝐼𝐿𝐿𝑅𝑅𝑠𝑠 

In order to develop an electric circuit-based models the circuit elements are to be 

initialized with a value at different states of battery charging & discharging 

process. For this a Hybrid Pulse power Characterization (HPPC) [9] test is 

conducted with a constant current pulse of a defined duration for different or same 

current rates for discharging or charging a battery at different ambient 

temperatures. In order to accomplish the parameterization of battery model mostly 

discharge pulse of a constant current input is chosen and the corresponding 

voltage out is considered to calculate the passive elements resistors, capacitor, 

open circuit voltage at a relaxed pulsed duration time. Later the pulses are 

considered at different states of discharge duration starting from 0 to 100% 

discharge till the cut-off voltage is reached [10].  
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For a given HPPC pulse input current, the single pulse output voltage response 

for a battery cell is given in Figure 7 . From each of these pulse outputs at different 

state of discharge corresponding parameters are calculated. 

 

Figure 10: Single pulse voltage output of HPPC Test 

 

             𝑅𝑅𝑠𝑠 = △𝑉𝑉
△𝐼𝐼

= 𝑉𝑉0−𝑉𝑉1
𝐼𝐼

      ,       𝑅𝑅1 = △𝑉𝑉
△𝐼𝐼

= 𝑉𝑉1−𝑉𝑉2
𝐼𝐼

      ,         𝑅𝑅2 = △𝑉𝑉
△𝐼𝐼

= 𝑉𝑉2−𝑉𝑉3
𝐼𝐼

 

                                                         𝜏𝜏1 = 𝑡𝑡2−𝑡𝑡1
ln𝑉𝑉2(𝑡𝑡2)
𝑉𝑉2(𝑡𝑡1)

           ,              𝜏𝜏2 = 𝑡𝑡3−𝑡𝑡2
ln𝑉𝑉2(𝑡𝑡3)
𝑉𝑉2(𝑡𝑡2)

 

                                                         𝐶𝐶1 = 𝜏𝜏1
𝑅𝑅1

                  ,             𝐶𝐶1 = 𝜏𝜏1
𝑅𝑅1

 

 

By calculating these parameters at each state of discharge and tabulating all the 

parameters using a look-up tables in MATLAB/Simulink develops a battery 

electrical circuit model which can be further used to estimate the states of battery 

at different conditions. The estimated output curves can be validated with the 

experiment results in laboratory and the new parameters values can be updated by 

using curve fitting algorithms or using machine learning algorithms. 
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By parameterization of RC model and thus determining the time duration to reach 

100% SOC or 100% SOD will be able to estimate the time for other different input 

conditions and finding the accuracy by validating each time and updating the new 

model parameters by using optimization algorithms. But most of the battery test 

procedures are started with standard charge and discharge tests in order to 

estimate time for standard input current and voltage tests an extra pulse input test 

is needed to be carried for each battery type which consumes one extra cycle test 

of battery charge and discharge process. This type of test is used to determine the 

power and internal ohmic resistance for charge and discharge tests as well as the 

open circuit voltage as a function of state of charge and only applicable to limited 

operating conditions when parameters have identified [11].  

As the main objective of the thesis is to predict only the execution time of the 

battery charge and discharge process at different operating conditions for different 

battery types at different test strategies, irrespective of finding the behavior of 

battery by parameterizing  at different states of charging and discharging process, 

a data driven model with help of machine learning algorithms can accomplish the 

task to estimate the execution time.  

4.3 Data-driven approach model: 

Data-driven techniques generally learn from historical data of the system and then 

wisely suggest a decision through results. One of the advantages of this model is 

they can learn the behavior of the battery based on monitored data and thus do not 

demand battery chemical modeling and knowledge. The main part of the data-

driven modelling is the unknown mapping between system’s inputs and its outputs 

from the available data [12]. There are number of areas contributing to data driven 

modelling: data mining, knowledge discovery in databases, computational 

intelligence, machine learning, Intelligent data analysis, soft computing and 

pattern recognition. 
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Machine learning (ML) [13] is an area of computer science that was for a long time 

considered as a sub-area of artificial intelligence (AI). Machine learning 

concentrates on the theoretical foundations of learning a data [14]. The process of 

building a machine learning model is given below. 

 

 
 
 

 

 

 

 

 

 

4.4 Regression model: 

Regression analysis is a statistical methodology that is most often used for 

numeric prediction. Whereas classification models predict the categorial (discrete, 

unordered) labels, regression models predict the missing or unavailable numerical 

data value. In a machine learning model prediction, it’s important to understand 

the prediction errors. There are two type of prediction errors bias and variance. 

Bias Error: Bias are the simplifying assumptions made by a model to make the 

target function easier to learn. Generally, linear algorithms have a high bias 

making them fast to learn and easier to understand but less flexible. In turn, they 

have low predictive performance on complex problems. 

• Low Bias: Suggests less assumptions about the form of the target 

function. 

      Input data 

Modelled (real) 
system 

Machine Learning 
model 

X 

Actual (observed) Output- Y 

Predicted Output- 𝒀𝒀′ 

 

 

 

 

 

Learning is done 
by minimizing 
the difference 
between 𝑌𝑌 − 𝑌𝑌′ 

Figure 11 :A typical Machine Learning model 
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• High-Bias: Suggests more assumptions about the form of the target 

function. 

Variance Error: Variance is the amount that the estimate of the target function will 

change if different training data is used. Ideally, it should not change too much 

from one training dataset to the next, meaning that algorithm is good at picking 

out the hidden underlying mapping between the inputs and the output variables. 

• Low Variance: Suggests small changes to estimate of the target function 

with changes to the training dataset. 

• High Variance: Suggests large changes to estimate of the target function 

with changes to the training dataset. 

Bias- Variance Trade-off: The goal of any machine learning algorithm is to 

achieve low bias and low variance and algorithm should achieve good prediction 

performance.  

The relationship between bias and variance is 

• Increasing the bias will decrease the variance (Underfitting of a model). 

• Increasing the variance will decrease the bias (Overfitting of a model). 

The parameterization of the machine learning algorithms is often a solution to 

balance out the bias and variance trade-off. 

 

Figure 12: Bias-Variance Trade-off 
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4.5 Data Utilized: 

For this master thesis the Test bed from the “SYSTECS Informationssysteme 

GmbH” is not yet ready to conduct the battery cell experiments, measurements 

from NASA organization are utilized as a third-party data for battery modelling. 

The battery dataset from NASA [15] comprised of a set of Lithium ion battery cells 

with charging and discharging profiles at room temperature. This dataset of 

battery is applicable for the performance test analysis of battery. Below are the 

details about the battery charge and discharge process. 

Battery type: Lithium-ion 

Battery type name: ’B0005’ 

Rated Capacity: 2Ah 

With the above characteristics charging & discharging cycles are performed and 

the below parameters are noted for 20 cycles. 

Charging: 

Voltage measured: Battery terminal voltage(volts) 

Current measured: Battery output Current (Amps) 

Temperature measured: Battery temperature (degrees) 

Time: Time vector for the cycle (secs) 

 

 

Charging: 

Charge method- CC-CV 

Chamber temperature-24℃ 

Charging current-1.5A 

Constant voltage- 4.2V 

Charge cutoff current-20mA 
 

Discharging: 

Discharge method-CC 

Chamber temperature-24℃ 

Current load-2A 

Discharge Cutoff Voltage-2.7V 
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Discharging: 

Voltage measured: Battery terminal voltage(volts) 

Current measured: Battery output Current (Amps) 

Temperature measured: Battery temperature (degrees) 

Time: Time vector for the cycle (secs) 

 

4.6  Charging method: 

From the documentation of battery testing procedures, the battery cell is being 

charged using constant current- constant voltage method (CC-CV) [16]. This 

method consists of three phases, the first phase, trickle-charge phase used to test 

whether the battery is functioning properly or if it is damaged. Generally, a very 

small of input current is applied to avoid excessive heating if the battery is 

damaged. In the second phase, constant-current phase charging current is 

increased to its full level and the battery voltage is observed  and continued until 

it reaches to rated maximum level then the third phase, constant-voltage in which 

a constant voltage equal to rated maximum voltage of the battery cell is applied 

across the battery and the battery current is observed. In this phase, the cell 

determines how much current it can absorb to continue the charging process, as 

the current drops to the charge cutoff current the cell is considered fully charged 

and CV phase is stopped. This combination of CC-CV is a fast charging method 

compared to constant voltage, constant current methods [17]. This method has a 

self-regulating current in the constant voltage phase and does not cause the battery 

to overcharge.  
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Constant current-Constant voltage (CC-CV) Charge: 

 

Figure 13: CC-CV charging curve of a Battery cell 

In Figure 10  details the typical charging of a CC-CV mode in which an input current 

of 1.5 amperes is applied to the battery till battery terminal voltage reaches to 

rated maximum voltage (here 4.2V) then a constant voltage input is applied till 

the battery current reaches to charge cutoff current (20mA). Once the charge is 

terminated, the battery voltage drops due to self-discharge, some chargers apply 

a brief topping charge to compensate for the small self. From the start of input 

charge current to end of battery current reaching its cut-off current is considered 

as the execution time for the Battery charging.  

4.7  Discharging method: 

For discharging a battery constant current method is used, where a negative input 

current is applied, and the battery cell voltage is observed till it reaches to the 

Discharge cutoff voltage  
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Discharging parameters vs Time: 

 

Figure 14: Initial discharge characteristics of Lithium-ion battery 

In the above figure the discharging characteristics of the NASA dataset with a 

constant load current of -2 A is applied till the battery terminal voltage reaches 

the cut-off voltage of 2.7V. 

5 Machine learning Battery Model Development: 
General machine learning model development process [18] involves the following 

steps: 

1.  Data pre-processing 

2.  Feature engineering 

3.  Feature extraction 

4.  Feature selection 

5.  Algorithm selection 

6.  Hyperparameter optimization 
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5.1 Data pre-processing: 

Before a data-driven battery model to be build the input data to be trained for the 

machine learning model needs to be relevant, cleaned, normalize and free from 

outliers. As in the condition of battery data the readings are taken from a variety 

of sensors which lead to measurement errors. In order to train the model data must 

be preprocessed i.e. missing values must be replaced by zero, mean, mode or any 

other value of each input feature of the model according to its requirement. Later 

the data is to be normalized if necessary and reducing the data in order to achieve 

a less dimensionality dataset so the machine learning model trains faster. 

Before removing outliers, according to the battery charging and discharging 

characteristics. From the Figure 9   it is evident that the current charge starts from 

negative input current and increased to the required input charging current and 

after the charge terminates the current input is again maintained to 0A and kept at 

standby mode. The last stage of 0A input current given us the open circuit voltage 

information of the battery after every charging process termination. As the main 

goal is to train the machine learning model with the duration time period between 

the starting time of the charging and end time of the charging, the other data set 

irrelevant for the charging process must be eliminated. So, from the battery 

dataset, the sample size from current input 1.5A to 20 mA is considered and 

remaining data is to be eliminated. This step is also applied to battery discharge 

dataset where the sample size starting from load current -2A to battery discharge 

cutoff voltage is considered. 
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Figure 15:Charge characteristics after data cleaning 

  

 

Figure 16:Discharge characteristics after data cleaning 
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5.1.1  Data binning: 

In the charging process the battery output voltage after reaching constant voltage 

phase should be maintained at 4.2V but due to the measurement errors the battery 

output voltage has a non-linearity readings as shown in Figure 13.In order to have a 

best fit for the estimated variable. This phase of data needs to be grouped to 4.2V 

or maximum rated voltage as specified by the supplier. For this data binning is  

 

Figure 17:Constant voltage phase at charging before binning 

is applied to the constant voltage phase where the battery voltage after reaching 
the maximum charging voltage is grouped to only a constant voltage value. 

 

Figure 18: Constant voltage phase after removing the non-linearity 
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5.1.2  Feature selection: 

In order to select the relevant features from the test bed that are required for the 

run time estimation of the battery, feature selection needs to be processed. As per 

the given documentation the industrial parameters measured and stored from a 

Battery test bed are 1.) Cell Current (A) 2.) Cell Voltage (V) 3.) Cell Temperature 

(°C) 4.) Climate Chamber Temperature (°C). Industrial parameters are the signals 

read out from the corresponding sensors, it is also important to note the cycle 

number of the battery cell to determine the current and further states of battery. In 

order to find out whether the features have high or low influence on the output 

variable. For this Pearson correlation coefficient method is utilized for each 

feature with respect to the time. 

The Pearson correlation coefficient [19] is used to measure the strength of a linear 

association between two variables (x, y), where if the coefficient value r = 1 means 

a perfect positive correlation and the value r=-1 means a perfect negative 

correlation. The formula for calculating is given below. 

𝑟𝑟 =
𝑛𝑛(𝛴𝛴𝛴𝛴𝛴𝛴) − (𝛴𝛴𝛴𝛴)(𝛴𝛴𝛴𝛴)

[𝑛𝑛𝑛𝑛𝑥𝑥2 − (𝛴𝛴𝛴𝛴)2][𝑛𝑛𝑛𝑛𝑦𝑦2 − (𝛴𝛴𝛴𝛴)2] 

 

From the data set available calculated the correlation coefficient matrix for the 

charging and discharging data set of single battery type at one cycle and 

represented it in a heat map as shown in  Figure 15, Figure 16 
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Figure 19: Heatmap for Correlation matrix of Charging data 
 

 

Figure 20:Heatmap for correlation matrix of Discharging data 
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From the above correlation coefficient matrix the time variable correlated with 

respect to time is given in the last column and here the ambient temperature and 

cycle number are constant for a single cycle during the entire charging and 

discharging process so these two variable have no correlation with respect to time 

at a single cycle of charge and discharge process because the values are constant 

during the entire single test. For discharging the current load is constant and is not 

varied from the start of discharge time so current load has no high correlation with 

discharge time variation during the process. 

From the two-correlation matrix the required highly correlated feature vector to 

predict time for charging and discharging process is given by 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔 = [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = [ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] 

In order to develop a battery machine learning model for both charge and 

discharge run time we can combine the feature vector as given below. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] 

As the battery data set available for the analysis has only a constant ambient 

temperature. In order to have a test plan for charging and discharging at different 

chamber temperature the chamber temperature feature must be included in the 

data set to be trained. For most of the test strategies like cyclic aging, energy and 

capacity test runs for several cycles which is useful to determine the capacity fade 

in the battery after a certain battery charge and discharge cycles, the cycles 

number is also an important feature to estimate the time at different. The feature 

vector after including these feature variables is given as 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � 

From the correlation matrix of charge and discharging process run time has a high 

correlation with the battery temperature, but the battery cell temperature 
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dependent on the variables Chamber temperature, current charge/discharge, 

Aging effects [20]. This parameter is used as for operational condition monitoring 

of cell temperature in order not to exceed manufacturer mentioned cell 

temperature in the data sheet. Battery cell temperature is an unpredictable during 

the process of charging and discharging, adding including this feature may lead a 

machine learning model to bias or variance effect. As we already have the features 

like current charge/discharge, chamber temperature that are required to monitor 

the end of charging and discharging of a battery cell, we can eliminate the battery 

temperature feature from the test bed in order to estimate the run time of battery 

process. As we are developing a model for the both charge and discharge process, 

included one more variable ‘Charging current’ which classifies the charge and 

discharge data set from the training dataset. As there are many battery cells from 

different manufacturer’s tested in a Test Factory, Therefore it  is a possible of two 

battery cells of same charging parameters being tested at once, in order to predict 

the execution time for individual battery cell it is mandatory to classify the battery 

cell testing data while training the model, for this included a categorial variable 

“Battery type”. From the all above conclusions the final battery feature vector set 

for runtime prediction is given as below. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

⎣
⎢
⎢
⎢
⎢
⎡

Charging current
Current measured
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⎦

⎥
⎥
⎥
⎥
⎤

 

A typical example of feature vector for charging time prediction for two cells are: 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈1= {1.5A, 20mA, 4.2V, 25°C, 2, Panasonic NCR 18650PF} 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈2= {1.5A, 20mA, 4.2V, 25°C, 2, LG Chem ICR 18650S3} 

 



34 | P a g e  

 

5.1.3  Feature Engineering: 

Feature engineering in the data preprocessing is the process of using domain 

knowledge of the data clean the raw data, it increases the predictive power of 

machine learning algorithm [21]. One of the important features for prediction of 

execution time is the battery cell current. From the Figure 17  it is evident that from 

the exponentially decreasing phase contains noises also called as outliers which 

deviates from the other observations. If the outliers not filtered or removed may 

lead to machine learning model to learn these outliers/noises and have poor 

prediction for output variable. As explained in the section charging method the 

battery current is decreased in constant voltage phase to the charging cut-off 

current given by the manufacturer. The current readings which are not in a 

decreasing function are unwanted disturbance in the signal. The first step is to 

detect the unwanted disturbance data points, once the outliers are detected and 

decide to filter them.  For the available data found out that lowness filters is 

efficient in smoothing the data but the current range used here is from 1.5 to 20 

mA but if this range is variable and different type of noises included and main 

difficulty in choosing the window size in the filter algorithm although there are 

some heuristic methods to estimate the window size for a given data, with the 

present available data cannot conclude to a particular filtering method for current 

signal noise removal and also smoothing algorithms deviates the original current 

cut-off  point instant where charging should be terminated. In order to find a 

universal algorithm to find out the solution for the machine learning model to train 

with the noise free data removed the outliers from the given data and trained the 

machine learning algorithm to estimate the charging time of battery cell. This 

algorithm shows a best predictor to estimate the charging time and removing the 

outlier data time instant from the dataset Figure 18 has an advantage of 

dimensionality reduction leads to training the model faster . 
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Figure 21: Noises in the battery cell current 

The algorithm to detect the outliers in battery current measured and eliminating 
them is given as below 

 

 

 

  

 

 

 

 

 

 

 

 

 

global a; % Declare variable a as global variable 
[a,b]=size(B0005_Charge9);%a-row size, b-column size 
list=[];% initialization of an empty list 
  
for i=1:a 
    if B0005_Charge9.Battery_voltage(i)>=4.2 
       %constant voltage phase starting condition 
         
        for j=i: a-1  
            
            if B0005_Charge9.Current_measured(j)<B0005_Charge9.Current_measured(j+1) 
               %condition to detect the outliers 
               list=[list,j+1];%Form a list with the index number 
            end 
            
        end 
            if isempty(list)~=1 %check for the condition of empty list 
                B0005_Charge9(list,:)=[];%Deleting the outliers from the dataset 
                [a,~]=size(B0005_Charge9);%Assign new row size 
                 
                list=[]; 
            else 
                break 
            end 
    end       
end        

 
Figure 22 :User defined algorithm to eliminate outliers 
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5.2 Algorithm selection: 

5.2.1  Support Vector Regression: 

Support vector machine (SVM) has first introduced by Vapnik. There are two 

main categories for support vector machines: support vector classification (SVC) 

and support vector regression (SVR). A version of an SVM for regression has 

been proposed in 1997 by Vapnik, Steven Golowich, and Alex Smola which is 

called support vector regression (SVR). The model produced by support vector 

classification only depends on a subset of the training data, because the cost 

function for building the model does not care about the training points that lie 

beyond the margin. Analogously the model produced by SVR only depends on a 

subset of the training data, because the cost function for building the model 

ignores any training data that is close (with in the threshold ε) to the model 

prediction. 

In SVR the main goal is to find a function 𝑓𝑓(𝑥𝑥) that deviates from 𝑦𝑦𝑛𝑛 by a value 

no greater than ε for each training point 𝑥𝑥𝑖𝑖 and at the same time is as flat as 

possible. 

If we have a set of training data where 𝑥𝑥𝑛𝑛 is a multivariate set of N observations 

with observed response values 𝑦𝑦𝑛𝑛. The linear function is given as: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑥𝑥 + 𝑏𝑏 

Here flatness means small 𝜔𝜔 value, it is required to minimize the Euclidean norm 

i.e. ‖𝜔𝜔‖2. Formally this can be written as a convex optimization problem by 

requiring  

𝐽𝐽(𝛽𝛽)=1
2
𝛽𝛽′𝛽𝛽) 

 

Subject to �𝑦𝑦𝑖𝑖
− 𝜔𝜔𝑥𝑥𝑖𝑖 − 𝑏𝑏 ≤ 𝜀𝜀

𝜔𝜔𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 
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It is also possible that no such function 𝑓𝑓(𝑥𝑥) exists to satisfy these constraints for 

all points. For this slack variable (𝜉𝜉𝑛𝑛, 𝜉𝜉𝑛𝑛∗) are introduced for each point.  This is 

like the “soft margin” in SVM classification because the slack variables allow 

regression errors to exist up to the value of 𝜉𝜉𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝑛𝑛∗ . Yet still satisfy the required 

conditions. By including these variables, the objective function is given as 

 

𝐽𝐽(𝛽𝛽)= 1
2
𝛽𝛽′𝛽𝛽 + 𝐶𝐶 ∑ (𝜉𝜉𝑛𝑛 + 𝜉𝜉𝑛𝑛∗)𝑁𝑁

𝑛𝑛=1 , 

Subject to �
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑥𝑥𝑖𝑖 − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖
𝜔𝜔𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖 ,𝜉𝜉𝑖𝑖∗ ≥ 0
 

The constant C > 0 determines the tradeoff between the flatness of f and the 

amount up to which deviations larger than 𝜀𝜀 are tolerated. The linear 𝜀𝜀- intensive 

loss function ignores errors that are within 𝜀𝜀 distance of the observed value by 

treating them as equal to zero. The loss is measured based on the distance between 

observed value 𝑦𝑦 and the 𝜀𝜀 boundary. This is given by. 

𝐿𝐿𝜀𝜀 = �
0                              𝑖𝑖𝑖𝑖 |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| ≤ 𝜀𝜀

  
      |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)|− 𝜀𝜀                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                               

 

The optimization problem is computationally simpler to solve in Lagrange dual 

formulation. This can be achieved by constructing a Lagrangian function from the 

primal function by introducing nonnegative multipliers 𝛼𝛼𝑛𝑛 and 𝛼𝛼𝑛𝑛∗  for each 

observation 𝑥𝑥𝑛𝑛. This leads to dual formula, where we minimize  

𝐿𝐿(𝛼𝛼) =
1
2
��(𝑎𝑎𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)�𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+ 𝜀𝜀�(𝛼𝛼𝑖𝑖 + 𝑎𝑎𝑖𝑖∗)
𝑁𝑁

𝑖𝑖=1

+ �𝑦𝑦𝑖𝑖�𝛼𝛼𝐼𝐼̈
∗ − 𝛼𝛼𝑖𝑖�

𝑁𝑁

𝑖𝑖=1

 

Subject to constraints �
∑ (𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛∗)𝑥𝑥𝑛𝑛𝑁𝑁
𝑛𝑛=1

0 ≤ 𝛼𝛼𝑛𝑛 ≤ 𝐶𝐶
0 ≤ 𝛼𝛼𝑛𝑛∗ ≤ 𝐶𝐶
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The β parameter can be completely described as a linear combination of the 

training observations using the equation. 

𝛽𝛽 = �(𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛∗)𝑥𝑥𝑛𝑛

𝑁𝑁

𝑛𝑛=1

 

The function used to predict new values depends only on the support vectors. 

𝑓𝑓(𝑥𝑥) = �(𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛∗ )(𝑥𝑥𝑖𝑖𝑥𝑥)
𝑁𝑁

𝑛𝑛=1

+ 𝑏𝑏 

The Karush-kuhn-Tucker (KKT) complementarily conditions are optimization 

constraints required to obtain optimal solutions. For linear SVM regression. The 

conditions are  

 

⎩
⎨

⎧
𝛼𝛼𝑛𝑛(𝜀𝜀 + 𝜉𝜉𝑛𝑛 − 𝑦𝑦𝑛𝑛 + 𝑥𝑥𝑛𝑛𝛽𝛽 + 𝑏𝑏) = 0
𝛼𝛼𝑛𝑛∗(𝜀𝜀 + 𝜉𝜉𝑛𝑛∗ + 𝑦𝑦𝑛𝑛 − 𝑥𝑥𝑛𝑛𝛽𝛽 − 𝑏𝑏) = 0

𝜉𝜉𝑛𝑛(𝑐𝑐 − 𝛼𝛼𝑛𝑛) = 0
𝜉𝜉𝑛𝑛∗(𝑐𝑐 − 𝛼𝛼𝑛𝑛∗) = 0

 

These conditions indicate that all observations strictly inside the epsilon tube have 

Langrange multipliers 𝛼𝛼𝑛𝑛 = 0 and 𝛼𝛼𝑛𝑛∗ = 0. If either 𝛼𝛼𝑛𝑛 or 𝛼𝛼𝑛𝑛∗  is not zero, then the 

corresponding observation is called a support vector. 

The property Alpha of a trained SVM model stores the difference between 

Langrange multipliers of support vectors, 𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛∗ . The properties Support 

Vectors and bias store 𝑥𝑥𝑛𝑛 and b. 

 

SV algorithm can be made nonlinear by simply preprocessing the training patterns 

𝑥𝑥𝑖𝑖, by a map ᶲ𝜙𝜙:𝑋𝑋 → Ʒ, in to some feature space “Ʒ” and then applying the 

standard SV regression algorithm. The dual formula for nonlinear SVM 
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regression replaces the inner product of the predictors (𝑥𝑥𝑛𝑛𝑥𝑥) with the 

corresponding to the kernel function K(𝑥𝑥𝑖𝑖 , 𝑥𝑥) . the kernel function is defined as a 

linear dot product of the nonlinear mapping, i.e., 

K(𝑥𝑥𝑖𝑖 , 𝑥𝑥)= 𝜑𝜑(𝑥𝑥𝑖𝑖)𝜑𝜑(𝑥𝑥) 

Nonlinear SVM regression finds the coefficients that minimize  

𝐿𝐿(𝛼𝛼) =
1
2��(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+ 𝜀𝜀�(𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗)
𝑁𝑁

𝑖𝑖=1

−�𝑦𝑦𝑖𝑖(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)
𝑁𝑁

𝑖𝑖=1

 

Subject to �
∑ (𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛∗ )𝑁𝑁
𝑛𝑛=1 = 0

0 ≤ 𝛼𝛼𝑛𝑛 ≤ 𝑐𝑐
0 ≤ 𝛼𝛼𝑛𝑛∗ ≤ 𝑐𝑐

 

The function used to predict new values is equal to  

𝑓𝑓(𝑥𝑥) = �(𝛼𝛼𝑛𝑛 − 𝛼𝛼𝑛𝑛∗)𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥)
𝑁𝑁

𝑛𝑛=1

+ 𝑏𝑏 

The KKT complementarity conditions are  

⎩
⎪
⎨

⎪
⎧𝛼𝛼𝑛𝑛�𝜀𝜀 + 𝜉𝜉𝑛𝑛 − 𝑦𝑦𝑛𝑛 + 𝑓𝑓(𝑥𝑥)� = 0
𝛼𝛼𝑛𝑛∗�𝜀𝜀 + 𝜉𝜉𝑛𝑛∗ + 𝑦𝑦𝑛𝑛 − 𝑓𝑓(𝑥𝑥)� = 0

𝜉𝜉𝑛𝑛(𝑐𝑐 − 𝛼𝛼𝑛𝑛) = 0
𝜉𝜉𝑛𝑛∗(𝑐𝑐 − 𝛼𝛼𝑛𝑛∗) = 0

 

 

5.2.2  Decision tree: 

Decision tree is a top to down tree like structure where learning is accomplished 

by splitting the training data set in to subsets from root node(beginning) down to 

leaf node. The leaf node gives the numeric responses. 

Common terms used in Decision trees: 
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1. Root node: It represents entire population or sample, and this further gets 

divided in to two or more homogeneous sets. 

2. Splitting: It is a process of dividing a node in to two or more sub-nodes. 

3. Decision node: When sub-node splits in to further sub-nodes, then it is 

called a decision node. 

4. Leaf/Terminal node: Nodes do not split is called leaf or Terminal node. 

5. Pruning: When we remove sub-nodes of a decision node, this process is 

called pruning. 

6. Branch/ sub-Tree: A sub section of entire tree is called branch or sub-tree. 

7. Parent and child node: A node, which is divided in to sub-nodes are called 

parent node of sub-nodes whereas sub-nodes are the child of parent node. 

5.2.3  Decision Tree Algorithm: 

There are many specific decision tree algorithms like ID3(Iterative 

Dichotomiser 3), CART etc., but as we are using battery training data set which 

comprises of both categorical (strings) variables, continuous (numeric) 

variables, CART (Classification and Regression Tree) algorithm is a best 

practice to use for a training dataset containing both categorical and continuous 

variables.  

 

5.2.4  Classification and Regression Tree (CART): 

CART grows an overly large tree using forward selection. At each step, finds the 

best spilt to build a tree. The fundamental idea is to select each split of a subset so 

that the data in each of the descendant subsets are “purer” than the data in the 

parent subset. Suppose we have ‘m’ number of features and n observations each 

feature can be a numeric variable or an ordered factor (categorical variable) the 

best split is the one with greater decrease in impurity. For a categorical feature 

(Classification) input impurity is selected by various algorithms like Deviance, 
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Gini index, Information gain. For a continuous input feature (Regression) residual 

sum of square is widely used in all regression problems. 

For building a Regression tree: 

In a CART algorithm the leaf node (Terminal node) represents a numeric value if 

the prediction is a continuous variable. In contrast, for a Classification problem 

the leaf node represents true or false in their leaves. As in this data set the 

prediction is continuous variable (Time) the measure of impurity at each split is 

accomplished by finding a region with least residual sum of square error (RSS) or 

Sum of square residuals error (SSR) for each input feature. 

RSS={𝑅𝑅𝑚𝑚}𝑚𝑚=1
𝑀𝑀 1

𝑁𝑁
� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑚𝑚)2𝑖𝑖∈𝑅𝑅  

The initial step in building a tree is finding a node that splits the entire dataset 

homogenously. This is done by finding sum of square residual for each data point 

corresponding to remaining data set in the training data set and predicting the 

output. The first data point which gives the least sum of square residual and its 

corresponding feature is called the root node and the data point is called the cut 

point s to divide the dataset in to two regions. Unlike SVR, CART algorithm 

classifies the categorical input and further splits the root node Figure 23. 

 

A cut-off point is selected by following basis 

𝑚𝑚𝚤̇𝚤𝑛𝑛[𝑟𝑟𝑟𝑟𝑟𝑟(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖 < 𝑠𝑠) + 𝑟𝑟𝑟𝑟𝑟𝑟(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖 > 𝑠𝑠)] 

 

𝑦𝑦𝑖𝑖-predicted output 

𝑥𝑥𝑖𝑖𝑖𝑖-each data point i for each feature k 

𝑠𝑠-cut-off point  
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This procedure is continued in choosing decision nodes which are further split in 

to sub nodes till the minimum leaf node is reached. In decision tree we can control 

the maximum number of splits and meaning number of leaf node to build an 

optimized regression tree to predict the output accurately. 

Decision tree diagram: 

 

Figure 23: A Typical example of Decision Tree with both continuous and categorical inputs 

5.2.5  Ensembles: 

The ensemble learning is used to develop an accurate machine learning model 

with the help of ensembles methods. The main principle behind it is combining 

prediction from multiple machine learning algorithms together to make more 

accurate predictions than an individual model, thus increasing the accuracy of the 

model. The main cause of difference in actual and predicted values are noise, 

variance and bias. Ensembles help to reduce the factors (expect noise, which is 

irreducible error). Using techniques like Bagging and Boosting helps to decrease 
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the Bias-variance trade-off problem and increases the robustness of the model. 

Combinations of multiple regression trees decrease variance, especially in the 

case of unstable regression model, and may produce a more reliable regression 

model than a single regression model. 

5.2.6  Bagging: 

Bagging or Bootstrapped aggregating is one of the first cases of an ensemble of 

decision trees. It is also the most intuitive, simple method and performs very well. 

Diversity in Bagging is obtained by using bootstrapped replicas of the original 

training set: different training data sets are randomly drawn with data replica with 

the use of the standard approach. Thus, each tree can be defined by a different set 

of variables, nodes and leaves. Finally, their predictions are combined by from the 

each formed with randomly sub divided datasets. The steps involved in building 

a Bagging Decision Tree are: 

1. Create random sub-sample of dataset. 

2. Train a CART model on each sample. 

3. Given a new dataset, calculate the average prediction from each model. 

5.2.7  Boosting: 

Boosting algorithm utilize weighted averages to make weak learners in to stronger 

learners. Unlike bagging that had each model run independently and then 

aggregate the output, boosting algorithms seek to improve the prediction power 

by training a sequence of weak models, each compensating the weaknesses of its 

predecessors. One of the widely used boosting algorithm is Gradient boosting. 

5.2.8  Gradient boosting decision tree: 

The Gradient is the version of boosting algorithm supported in many of 

programming language machine learning libraries. Below are the steps involved 

in building a gradient boosting regression tree. 
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For a given input data be trained {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑛𝑛  (n- number of data points) and a 

differentiable Loss function L�𝑦𝑦𝑖𝑖 ,𝐹𝐹(𝑥𝑥)�. Loss function is to evaluate how well a 

model can predict the output. The loss function that is mostly used in Regression 

problem with gradient boost is 1
2

(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)2.The steps to build a 

Gradient Boosting Decision tree are: 

Step 1: Initialize the model with a constant value: 

𝐹𝐹0(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝛾𝛾 �𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝛾𝛾)

𝑛𝑛

𝑖𝑖=1

 

Step 2: For m= 1 to M number of Trees: 

a. Derivative of loss function with respect to predicted value 

• 𝑟𝑟𝑖𝑖𝑖𝑖 = − �𝜕𝜕𝜕𝜕�𝑦𝑦𝑖𝑖,𝐹𝐹(𝑥𝑥𝑖𝑖)�
𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖)

�
𝐹𝐹(𝑥𝑥)=𝐹𝐹𝑚𝑚−1(𝑥𝑥)

 

• 𝑟𝑟,𝑖𝑖,𝑚𝑚- r is the residual, i the data point number, m is the tree 

b. Fit a regression tree to the 𝑟𝑟𝑖𝑖𝑖𝑖 values and create terminal regions 

𝑅𝑅𝑗𝑗𝑗𝑗, for j=1…𝑗𝑗𝑚𝑚 – m is the index number of tree and j is the index 

for each leaf in a tree. 

c. For j=1…𝑗𝑗𝑚𝑚 compute 𝛾𝛾𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝛾𝛾 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖) + 𝛾𝛾)𝑥𝑥𝑖𝑖∈𝑅𝑅𝑖𝑖𝑖𝑖 - 

this step is to determine the output values for each leaf. If two 

residuals ended up in a leaf (terminal node), it is unclear what its 

output value should be, so for each leaf in a tree the "𝛾𝛾𝑗𝑗𝑗𝑗" is 

calculated thus given a single output value for each leaf in a tree. 

d. Update 𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚−1(𝑥𝑥) + 𝜈𝜈� 𝛾𝛾𝑗𝑗𝑗𝑗
𝐽𝐽𝑚𝑚

𝑗𝑗=1
𝐼𝐼�𝑥𝑥 ∈ 𝑅𝑅𝑗𝑗𝑗𝑗� 

• This is the final predicted value of each sample data point and the 

second term summation is to add up the output values, 𝛾𝛾𝑗𝑗,𝑚𝑚’s for 
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all leaves, 𝑅𝑅𝑗𝑗,𝑚𝑚, that a sample x, can be found. The Greek character 

‘𝜈𝜈’-nu is the learning rate ranging between 1 and 0. This learning 

rate can be used to control each tree effect on the final prediction 

of output this helps to reduce the number of tress required to form 

and improves the accuracy. 

Finally, a Gradient boosting decision tree model is built for a given training data 

set. Here in the step 2.b it should be noted that a regression tree is built by 

predicting the residuals rather than the output values and then followed by adding 

the previously predicted output value for the same sample. This process can be 

continued till the residual reaches to minimum or zero. This sums up the formation 

of a boosting algorithm where it builds a decision tree model from sequential weak 

learners to a strong learner to predict the output accurately. 

5.3 Cross Validation & Hyperparameter Tuning: 

5.3.1  Hyperparameter Tuning: 

Whether it’s a SVM, Decision tree, Ensemble model, the parameters like learning 

rate, number of leaves, maximum number of splits, number of trees to be formed 

(Ensemble modelling) and kernel function are to be set before training a model, 

these parameter set is called Hyperparameter. These hyperparameters are to be 

finalized for a given data set in order to predict the output accurately. Various 

strategies are used to find the optimal hyperparameters for a given training data 

set. In this thesis mainly two strategies are used: 

1) Grid search 

2) Random search 

Grid search: Grid search is a traditional way to perform hyperparameter 

optimization. It works by searching exhaustively through a specified subset of 

hyperparameters. The benefit of grid search is it finds the accurate optimal 
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combination of parameters, but main drawback is that model is tested with every 

combination of hyperparameter values within given grid division which is time 

consuming and computationally expensive. 

Random search: Random search differs from grid search mainly in that it searches 

the specified subset of hyperparameters randomly instead of exhaustively. The 

major benefit is decrease in the processing time. But it is possible that Random 

search will not find as accurate of result as Grid search 

For this a new method called random grid sweep is mentioned in [22] . This method 

uses only a subset of all possible combinations, selected randomly in an entire 

grid. The difference between random grid and the random search mode is that the 

latter chooses the parameter randomly within the specified range, while the former 

uses only the exact values defined in the algorithm module. In this thesis utilized 

the Random grid sweep method to find a best hyperparameters set. 

5.3.2  Cross-Validation: 

There is always necessity to validate the machine learning model. The 

performance of model cannot be finalized with training data. In order to know the 

model performance for an entirely new dataset. For this the training dataset is 

partitioned in the following way: 

k-Fold Cross validation: 

In this method the data is divided in to k subsets as shown in Figure 2, such that each 

time one of the k subset is used as test set and the other k-1 subsets are used to 

train the model and test data is used for prediction. During the cross validation 

step the optimal hyperparameters also can be selected where at each iteration of 

validation the hyperparameter tuning method is implemented and calculated the 

error estimation is averaged over all k trials and the parameter set which gives less 

error is considered as best Hyperparameter set for the model. 
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Figure 24: Cross-Validation & Hyperparameter Tuning 

 

6 Results & Discussion: 

Performance Metrics:  

A machine learning model can be evaluated by calculating the performance 

metric, and further improvements can be made to achieve a desirable accuracy. 

The evaluation metrics explain the performance of a model, the metrics utilized 

are given below: 

Coefficient of Determination (𝑹𝑹𝟐𝟐) : 

In regression analysis learning to access a model or to know the proportion of 

variance in the dependent variable that is predictable from independent variable 

coefficient of determination is calculated as below 

𝑅𝑅2 = 1 −
∑(𝑦𝑦 − 𝑦𝑦′)2

∑(𝑦𝑦 − 𝑦𝑦�)2  
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=        1−
𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

 

Here y- measured variable                ,     𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 − Residual sum of squares 

        𝑦𝑦 � - mean of measured variable  ,     𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 – Total sum of squares 

        𝑦𝑦′- estimated output variable 

• An 𝑅𝑅2 of 0 means that the dependent variable cannot be predicted from the 

independent variable. 

• An 𝑅𝑅2 of 1 means the dependent variable can be predicted without error from 

the independent variable. 

Root mean square error (RMSE): 

It represents the sample standard deviation of the differences between predicted 

values and observed values (called residuals).  

 

RMSE=�1
𝑛𝑛
� �𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑗𝑗′�

2𝑛𝑛

𝑗𝑗=1
 

• A lower value close to 0 means that dependent variable predicted without 

error from the independent variable. 

• A higher value of RMSE means that dependent variable predicted with 

larger variance from the independent variable. 

Support vector regression: 

Support vector regression algorithm is implemented for a single cycle battery 

charging data. As per the algorithm “gaussian” kernel function is selected because 

the output has a nonlinear behavior with the input dataset, linear function cannot 

be used, even though a polynomial function can be utilized but choosing the 
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degree of the polynomial varies for each time a new data is being added, By these 

conclusions gaussian kernel function is the best choice for nonlinear mapping of 

input features to a linear feature space. 

 
 

 

• Coefficient of determination 𝑅𝑅2 is 0.9750 

• RMSE is 31.4327 

• Measured charging time:168.5805 

• Predicted charging time: 129.4737 

From the above results SVR algorithm for estimating charging time is not 

accurate and in order to increase the accuracy hyperparameter tuning is carried 

out and the implemented the new best optimized parameters and trained the 

algorithm again and estimated the charging time and the best parameter set for 

SVR algorithm is  
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• Coefficient of determination 𝑅𝑅2 :0.9910 

• RMSE:26.6486 

• Measured charging time:168.5805 

• Predicted charging time:144.5439 

Even though after implementing the optimized parameters residual of measured 

and predicted charging time is large. The reasons for estimating the charging time 

with less accuracy are, 

1.  The algorithm has support vector datapoints upon which future estimation is 

totally dependent. While considering only support vector data points and 
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ignoring other data points could lead to less accuracy in prediction of execution 

time for a battery charging and discharging process. 

2.  Increasing the support vector data points also leads to large residual error for a 

new dataset. The input feature set contains both continuous and categorial 

variables which is a both regression and classification problem. For this all the 

categorial variables are encoding to dummy variables which are either integers 

or binary numbers. After encoding the categorial inputs the model predicts 

with less residual error but for a new dataset it produces a large residual error. 

This is due to the reason that after encoding the categorical feature, these 

variables are treated as regression problem instead a classification problem 

where a new battery type feature is not considered as a categorical variable. 

Regression Tree: 

Unlike the SVR, regression tree classifies the categorical parameters in a 

combination set of continuous and categorical feature as shown in Figure 23 . Before 

tuning hyperparameters the default parameters are selected for the regression tree: 

minimum leaf size ‘1’, Maximum splits ‘50’ and trained the algorithm with the 

single cycle data set. 
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• Coefficient of determination 𝑅𝑅2:0.9993 

• RMSE:57.2916 

• Measured charging time:168.5805 

• Predicted time:166.9118 

Decision tree gives a better coefficient of determination for the trained data but 

RMSE value is large so that the variance of the model prediction is high or 

overfitting. In order to have less error tuning of hyperparameters is required to 

reduce the bias-variance tradeoff for the model. Hyperparameter tuning is done 

with random grid search method for 60 iteration with a 5-fold cross validation. 
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• Coefficient of determination 𝑅𝑅2:0.9995 

• RMSE:46.5870 

• Measured charging time:168.5805 

• Predicted time:166.9118 

From the results even after training with optimized parameters the RMSE value 

is still huge and the predicted time is the same. For this in order to reduce the 

error, implementations of ensemble of trees is required. 

Bagging Decision Tree: 

Bagging ensemble implementation of decision tree is used to reduce the variance 

in the model prediction. Initially default parameters are given to train the 

algorithm minimum leaf size 1, maximum number of splits 50, number of learning 

cycles 100. 
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• Coefficient of determination 𝑅𝑅2:0.9999 

• RMSE:19.6963 

• Measured charging time:168.5805 

• Predicted time:165.7147 

Without optimal hyperparameters the RMSE is 19.6963 and the residual charging 

time is also more. Using random grid search trained again the model with the 

optimized hyperparameters. 
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• Coefficient of determination 𝑅𝑅2:0.9999 

• RMSE:17.5120 

• Measured charging time:168.5805 

• Predicted time:165.6865 

The optimized parameters are minimum leaf size 1, maximum number of splits 

694, number of learning cycles 24. RMSE error is not varying much and the 

execution time of charging is also not predicting accurately. As from the bagging 

ensemble algorithm, it forms several numbers of trees for the same data set but at 

the end the prediction is done with aggregate of all the trees formed which means 

the error is aggregated instead of minimization while forming the trees.  

Boosted Decision Tree: 

As boosted decision tree algorithm builds decision tree with minimizing the error 

from the previous decision tree, a boosted ensembles of decision tree with default 

hyperparameter values are applied and trained the algorithm. 
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• Coefficient of determination 𝑅𝑅2:1.0 

• RMSE:0.0621 

• Measured charging time:168.5805 

• Predicted time:168.5723 

Boosted decision tree given a best prediction of execution time and less RMSE 

error with default parameters values and coefficient of determination is also 1 

which is 100% prediction. As to make the process complete tuning of parameters 

is necessary. 
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• Coefficient of determination 𝑅𝑅2:1.0 

• RMSE:0.0014 

• Measured charging time:168.5805 

• Predicted time:168.3794 

Tuning hyperparameters using random grid search gives an optimal prediction of 

charging time with very less RMSE error. From this it is evident that the best 

algorithm to predict the execution time of cell charging and discharging is 

Boosted decision tree. 

Now trained the algorithm with “8 cycles” of three different types of cell charging 

and discharging processes dataset to find whether the Boosted decision regression 
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tree predicts the output accurately. The following gives an overview of the three 

types of cell charging and discharging operating conditions. 

 

 

 

Below is the table for top 10 combinations of parameter set for 60 iterations of 

Random grid sweep method. 

Table 4:Top 10 Parameter combination set with Random grid search method 

Rank NumLearningCycles LearnRate MinLeafSize MaxNumSplits 

1 56 0.196568758 19 253 

2 123 0.106335898 4 5514 

3 128 0.209834698 65 4984 

4 241 0.246280386 59 41 

5 198 0.149230429 71 102 

6 12 0.358455747 27 3180 

7 231 0.891362195 172 87 

8 240 0.696944883 1 7 

9 21 0.812778019 41 18 

10 47 0.139883635 37 10 

• Battery Types: B0005, B0006, B0007 
• Charge method: CC-CV 
• Constant Voltage:4.2V  
• Charge Cutoff Current:20 mA 
• Charge Current: 1.5A 

 

• Discharge method: CC 
• Discharge current(load): -2A 
• Discharge cut off voltage:2.7V, 

2.5V, 2.2V 
• Rated capacity: 2Ah 
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From the Table 4  rank 1 parameter set gives a less RMSE value, these parameter set 

are implemented for training 8 cycles of charging & discharging processes and 

predicted the 9th cycle execution time. 

 

Figure 25: Charging Time prediction (9th cycle) for three different types of cell (8cycles of charging & discharging 
process) 

• Coefficient of determination 𝑅𝑅2:0.9997 

• RMSE:19.7925 

• Measured charging time:160.0891(minutes) 

• Predicted time:161.1850 (minutes) 

From the results of prediction of charging time for 9th cycle has a residual error of 

1.0959. Training with larger dataset also algorithm predicts better and the 

hyperparameter tuning method “Random grid sweep” given a better parameter 

set. 
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Figure 26: Discharging Time prediction (9th cycle) for three different types of cell (8 cycles of charging & discharging 
process) 

• Coefficient of determination 𝑅𝑅2:0.9999 

• RMSE:0.7536 

• Measured charging time:54.8315 (minutes) 

• Predicted time:55.0596 (minutes) 

Discharge time prediction of cell is even more accurate than charging time as the 

discharging process (CC discharge phase) under goes only in CC phase which is 

not complex where as charging of cell is done in CC-CV phases. 
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7 Conclusion: 
The main target is to find the best appropriate Battery modelling method as a 

digital twin to predict the execution time of different types of cell charging and 

discharging process for different test strategies in Battery test bed. As per the 

available Battery cell test bed data, the developed Battery model predicts 

execution time for different types of cells from different manufacturers for 

different test strategies (See section 3.0), but the chamber temperature used in the 

dataset is only for room temperature. According to the boosted decision tree 

functionality and its behavior in decision making for root split for different cycles, 

it is also expected that the predicts time for different chamber temperatures is also 

possible. By predicting the discharge time at different cycles, capacity fade of the 

battery can also be calculated as follows: 

Predicted discharge time at cycle 9 is 55.0596(minutes) 

Estimated capacity=Discharge current (A)× Predicted Time (h) 

                               =2× 55.0596
60

  

                               =1.835 Ah 

Measured capacity= 1.824 Ah, Rated Capacity =2Ah 

After “9” cycles of charge and discharge process estimated capacity of the cell is 

8.25% and the measured capacity fade of the cell is 8.8 %. From the results it is 

also possible to estimate the capacity fade in a cell by predicted execution time of 

discharge of cell for the corresponding cycles. 

Limitation: The training of data for all the cell is implemented starting from cycle 

number “2”. Because before testing the cell in a test bed, they are stored in 

warehouse. During this period self-discharge of cell take place and at the 

beginning of the test the state of the charge of the battery is not known.  
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