INCODIO® - a new Tool for automotive SIL applications

Stuttgart Symposium Automotive & Engine Technology – March 2007, 21st

Dr. Thomas Zurawka, Olaf Meyer, SYSTECS Informationssysteme GmbH
Overview

ECU Software Development

- Requirements Management
- Design & Prototyping
- Implementation

Calibration
Validation
Integration
Verification

Hardware-in-the-Loop (HIL) Test

ECU Software

Vehicle
HIL – Current Status

- **ECU Validation** with HIL Technology
 - widely used for Validation of a Vehicle (Component)
 - important part of Vehicle Development Process
 - Value Proposition for Customers has been proven
 - i.e. higher Quality of Vehicles and ECU Software

- **ECU Calibration** with HIL Technology
 - still less used due to inappropriate Vehicle Models
HIL – fundamental Disadvantages *)

- **huge effort** for Installation and Operation
- **very expensive**
- **less flexible** due to limited Re-Configuration of Hardware
- separate Validation of ECU Hardware and ECU Software **not possible**
 - indeed we have here a „Hardware & Software - in - the Loop“ Technology

*) see also Hanselmann, dSpace; 11. Euroforum Jahrestagung „Elektronik-Systeme im Automobil“, München, Fachtag Systems Engineering, February, 15th 2007
HIL – Summary

- fundamental Disadvantages of HIL- Technology cannot be removed!
 - due to hardware-based connection to an ECU

- Which Technology can overcome these deficiencies?
 - Software-in-the-Loop Technology!
SIL – an emerging Technology

- **Software-in-the-Loop (SIL)**
 - less effort for Installation
 - less expensive than today’s HIL solution
 - flexible and easily re-configurable
 - Last but not least: better support of Methodology!
SIL – an emerging Technology

- AUTOSAR
 - component based
 Development and Validation of ECUs
 - HIL & SIL for ECU Hardware & Basic Software!
 - SIL for ECU Software Components
SIL – What is this exactly?

- Virtual Validation and Calibration of ECU Software, e.g.
 - C Code and / or Object Code for Production ECU’s!
 - high efficient implementation of Calibration Data
 - Use of special arithmetic Libraries
 - Use of special C Language constructs
 - „Struct“, „Union“, „Pragma“, „Macro“…
 - hand-coded or automatically generated C Code based on Models for ECU Software
SIL – What is this exactly?

- **Virtual Validation** and **Calibration** of ECU Software, e.g.
 - **no** Use of Matlab/Simulink, ASCET Models, …
 - Behavior is different to Production Software!
 - **no** Use of C Code for Prototyping ECU’s
 - Behavior is different to Production Software!
SIL – The Technology in a Nutshell

- Test Tool Calibration Tool
- Integration Tool for C Code, Object Code, Description Files for a Software Component
- Simulation Tool
- Models
 - Vehicle
 - ECU Hardware
 - ECU Basic Software
 - ECU Network
 - remaining ECUs

Production Software!
SIL – Which Models must be available?

- **Vehicle Models**, which allow a Validation and a Calibration in the Lab
 - is as well mandatory for HIL applications!

- **Models** for ECU Network
 - i.e. CAN-Bus Simulation

- **Models** for remaining ECU‘s in the Vehicle
 - i.e. CANoe Models

- **Models** for ECU Hardware & Basic Software
 - i.e. for NVRAM, EEPROM; **will be simplified AUTOSAR**!
SIL – What is the job of the Simulation Tool?

- **Open Interfaces** for Integration of C Code

- Integration of Models from different Tools
 - MATLAB®/Simulink®, ASCET, …

- **PC** (s) as a Simulation platform
 - in Real-time; faster than Real-time

- **Measurement** and **Calibration** of physical Variables
 - i.e. by an open Interface for ASAM-MCD-2MC
SIL – What is the job of the Integration Tool?

- Support of different **Description formats** for Software Components

![Diagram showing software components and integration tools](image)
SIL – What is the job of the Integration Tool?

- **simple Integration** of C-Code
 - Less additional Effort
 - *i.e. no* Definition of Functions and Variables in the Simulation Tool
 - Support of memory optimizing C Language constructs
 - "struct", "union", ...
 - Re-Definition of special C statements
 - *i.e. "CONST" -> "VOLATILE"
 - enables Calibration of Variables during Simulation

![Diagram showing the integration process](attachment:image.png)
SIL – What is the job of the Integration Tool?

- Support of **Measurement & Calibration** during Simulation
 - i.e. by Support of **ASAM-MCD-2MC**
 - enables Measurement of physical Variables of the Production ECU Software
 - enables Calibration of Parameters, Curves and Maps during Simulation
 - arbitrary Record Layouts of Production ECU Software must be supported

Production Software

Software Component

Integration Tool

Simulation Tool
SIL – What is the job of the Integration Tool?

- Identification of **Interfaces** and **Real-time behavior** of a Software Component
 - i.e. by Support of the **AUTOSAR** Description
 - enables Stimulation und Input and Output interfaces
 - enables automatic Identification of Processes / Runnables
 - enables Specification of „Priority“, „Trigger Mode“, „Period“, … of Processes / Runnables
SIL – Which Tools are ready for use?

Production Software!

Software Component

Integration Tool for C Code, Object Code, Description Files for Software Components

Simulation Tool

Models

Vehicle
ECU Hardware
ECU Basic Software
ECU Network
remaining ECUs
SIL – Which Tools are ready for use?

Production Software!

INTECRIO

Vehicle
ECU Hardware
ECU Basic Software
ECU Network
remaining ECUs

MatWorks
SIL – Validation of Production Software
SIL – Calibration of Production Software

Automatic Calibration

Production Software!

Software Component

Measurement Data

MDF

Calibration Data

MSR (CDF), DCM

ETAS INTECRIO

Models
SIL – Comparison of Model with Production Software

Design of Software Component

OEM

Supplier

MathWorks

Simulink

ETAS

INTECRIO

Model

ETAS

ASCET

C-Code Editor

Implementation of Software Component

Production Software!

C-Code Object Code

ETAS

INTECRIO

Validation of Software Component
Summary

- **HIL** Technology plays, despite fundamental Disadvantages, an important Role in today’s Vehicle Development Process.

- Importance of **SIL Technology** will steadily increase
 - SIL avoids the Deficits of HIL
 - SIL additionally supports the component based Validation within the AUTOSAR Methodology

- **INCODIO® and INTECRIO** are excellent Tools for SIL applications
Thank you for your Attention

SYSTECS Informationssysteme GmbH
Kernerstr. 4
D 70771 Leinfelden-Echterdingen

Phone +49- 711- 16082 - 10
Fax +49- 711- 16082 - 8

info@systecs.com
www.systecs.com